a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
=>BFEC là tứ giác nội tiếp
b: BFEC là tứ giác nội tiếp
=>\(\widehat{BFE}+\widehat{BCE}=180^0\)
mà \(\widehat{BFE}+\widehat{AFE}=180^0\)(hai góc kề bù)
nên \(\widehat{AFE}=\widehat{ACB}\)
Xét ΔAFE và ΔACB có
\(\widehat{AFE}=\widehat{ACB}\)
\(\widehat{FAE}\) chung
Do đó: ΔAFE đồng dạng với ΔACB