Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H, chứng minh :
a) AE x AB = AD x AC
b) Góc AED = góc ACB
c) Tính diện tích tam giác ABC biết AC = 6cm ; BC = 5cm ; CD = 3cm
d) BE x BA + CD x CA = BC2
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac ABE đồng dạng tam giác ACF
b) Chứng minh EC.HF=BF.HE
c) Chứng minh góc HEF = góc HCB
d) biết AE=9cm, AB=12cm. tính s tam giác ABC phần
tam giác AEF
Cho tam giác ABC cân ở A có góc BAC=120 độ. Lấy điểm E trên CB sao cho CE=CA. Tia phân giác của góc ACB cắt AB tại G
a) Chứng minh AG=GE.
b) Tính số đo góc EGC.
Cho tam giác ABC có 3 góc nhọn , 2 đường cao BE , CF cắt nhau tại H.
a) Chứng minh : AH ⊥ BC tại D
b) Chứng minh : CE ✖ CA = CD ✖ CB
c) Chứng minh : góc ADE = góc ACH
d) Chứng minh : tam giác AEF ∼ tam giác ABC
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường cao AH, tia phân giác của góc ABC cắt AC tại F và AH tại E. a) Tính BC, AF, FC b) Chứng minh tam giác ABC đồng dạng tam giác HBA c) Chứng minh AE.AF=EH.FC Mong các bạn ra đáp án giúp mình câu này với Thank you các bạn❤❤❤
cho tam giác abc vó 3 góc nhọn. Gọi D,E,F là chân đường hạ từ A,B,C của tam giác. Ba đường cao này cắt nhau tại H.
a) CM: tam giác AHE đồng dạng vs tam giác BHD
b) CM: AE.AC=AF.AB
c) Cho AE=3cm; AB=5cm.Tính tỉ số SAEF/SABC
Cho tam giác ABC nhọn (AB<AC<BC),hai đường cao AK và CF cắt nhau tại H.Có M là trung điểm của BC
a)Chứng minh tam giác ABK đồng dạng tam giác CBF.Từ đó suy ra AB.BF = BC.BK
b)Chứng minh tam giác BFK đồng dạng tam giác BCA.Từ đó suy ra BF.BA/BM.BK = 2
c)Qua H,vẽ đường thẳng vuông góc HM cắt AB và AC lần lượt tại D và E.Chứng minh : tam giác MED cân (Hướng dẫn : Chứng minh tam giác BHM đồng dạng tam giác CIH và tam giác BHN đồng dạng tam giác AIH)