cho tam giác abc cân tại a trên đường phân giác ngoài của góc a lấy 2 điểm m và n về hai phía của a( m thuộc nửa mặt phẳng bờ ac có chứa b, n thuộc nửa mặt phẳng còn lại sao cho am.an=ab^2
chứng minh rằng tam giác anb đồng dạng với acm
Cho tam giác ABC cân tại A coa AH là đường cao. Trên đường phân giác ngoài của góc A lấy 2 điểm M và N về 2 phía của A ( M thuộc nửa mặt phằng bờ AC chứa B, N thuộc nửa mặt phẳng còn lại )
a) Cm: ANB ~ ACM
b) gọi I là giao điểm của BN và CM. C/m: ANB ~ INM
Cho Tam giác ABC vuông tại A, có AB=12cm ; AC=16cm. Kẻ đường cao AH (H∈BC).
a) Chứng minh: Tam giác HBA đồng dạng với Tam giác ABC
b)Chứng minh: \(AB^2\)=HB.BC, tính HB
c)Trên cạnh AC lấy điểm D, trên nửa mặt phẳng bờ BC không chứa điểm A xác định điểm E sao cho CDBE là hình bình hành, qua B kẻ đường vuông góc với tia CE tại F. Chứng minh rằng:CD.CA+BD.CF=\(BC^2\)
CHo tam giác ABC phân giác AD . TRên nửa mặt phẳng bờ BC không chứa Điểm A vẽ tia Bx sao cho góc BCx = góc BAD . GỌi I là giao điểm của tia Cx với AD kéo dài .
a) Hai tam giác ADC và BDI có đồng dạng không . VÌ sao ?
b) Chứng minh AB.AC=AD.AI
c) CHứng minh AB.AC-DB.DC=AD2
Cho tam giác ABC cân tại A. M là trung điểm BC. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho góc CME = góc BDM. Chứng minh:
a, \(BD.CE=BM^2\).
b, Tam giác MDE\(\approx\)tam giác BDM.
c, DM là phân giác góc BDE.
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
cho tam giác ABC cân tại A , M là trung điểm D và E theo thứ tụ thuộc các cạnh AB và AC . sao cho góc CME = góc BDM :a,CM : BD.CE=BM^2
cho tam giác ABC cân tại A , M là trung điểm D và E theo thứ tụ thuộc các cạnh AB và AC . sao cho góc CME = góc BDM :a,CM : BD.CE=BM^2