Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai yến nhi

Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần lượt tại D và E. Chứng minh BD = CE.

Nguyễn Lê Phước Thịnh
14 tháng 4 2020 lúc 10:26

Ta có: ΔABC cân tại A(gt)

\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

\(\widehat{ABD}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACE}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE(g-c-g)

\(\Rightarrow\)BD=CE(hai cạnh tương ứng)