Ta có: ΔABC cân tại A(gt)
\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
mà \(\widehat{ABD}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))
và \(\widehat{ACE}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
AB=AC(ΔABC cân tại A)
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE(g-c-g)
\(\Rightarrow\)BD=CE(hai cạnh tương ứng)