a) Xét tứ giác AMBE có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo ME(M và E đối xứng nhau qua D)Do đó: AMBE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AMBE là hình bình hành(cmt)
nên AM//BE và AM=BE(Hai cạnh đối của hình bình hành AMBE)
mà \(C\in EB\) và EB=EC(E là trung điểm của BC)
nên AM//CE và AM=CE
Xét tứ giác AMEC có
AM//CE(cmt)
AM=CE(cmt)
Do đó: AMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh đáy BC(E là trung điểm của BC)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇔AE⊥BC
hay \(\widehat{AEB}=90^0\)
Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)(cmt)
nên AMBE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Ta có: E là trung điểm của BC(gt)
nên \(BE=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Ta có: ΔABE vuông tại E(\(\widehat{AEB}=90^0\))
nên \(S_{ABE}=\dfrac{AE\cdot EB}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)