Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
cho tam giác ABC vuông tại A(AB<AC),đường trung tuyến AM.Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F.Kẻ AH vuông góc với BC,AH cắt EF tại I.Cm
a)góc BAM=góc ABM
b)góc ACB=góc AEF=>tam giác MBE đồng dạng với tam giác MFC
c)AB.AE=AC.AF
Cho tam giác ABC vuông tại A biết AM = 6 cm , AC=8cm đường cao AH. Gọi DE lần lượt là chân đường vuông góc kẻ từ H đến AB và AC .
a, Tính diện tích tam giác ABC
b, Chứng minh : AM=DE
c,Kẻ trung tuyến AM của tam giác ABC. Chứng minh : AM vuông góc DE
Cho tam giác ABC có đường cao BD và CE cắt nhau tại H. Đường vuông góc với Ab tại B và đường vuông góc với Ác tại C cắt nhau ở K. a, Tứ giác BHCK là hình gì? b, Gọi M là trung điểm của BC , I là trung điểm của AK.Chứng mình : IM=1/2 AH
tam giác ABC vuông tại A , M là điểm trên BC . MD là đường thẳng kẻ từ M đền AB .ME vuông góc với AC . Gọi O là trung điểm của AM Chứng minh D và E đối xứng qua O . Tứ giác BDEC có 2 góc đối bù nhau nếu AM vuông góc với DC . Xác định vị trí điểm M trên BC để 2AM+3DE đạt giá trị nhỏ nhất Gọi AH là đường cao , AK là đường trung tuyến . Kẻ Hi vuông góc với AB , AC vuông góc với HF . cm Ak vuông góc với IF Cm góc DHF bằng 90 độ
Cho \(\Delta\)ABC vuông tại A,kẻ đường cao AH
1)Chứng minh:\(\Delta\)ABC đồng dạng \(\Delta\)HAC
2)Cho AB=6cm,AC=8cm.Tính BC,AH
3)Từ H kẻ HE\(\perp\)AC.Chứng minh:\(^{HE^2}\)=EA.EC
4)Gọi I là trung điểm của AH,EI cắt AB tại F.Chứng minh:\(^{AH^2}\)=FA.FB+EA.EC
cho tam giác abc, các đường cao bd, ce cắt nhau tại h. đường vuông góc với ab tại b và đường vuông góc ac tại c cắt nhau ở k. gọi m là trung điểm của bc
a, cm tam giác adb đồng dạng tam giác aec
b, cm he.hc=hd.hb
c, cm h, k, m, thẳng hàng
d, tam giác abc phải có điều kiện gì thì tam giác bhck là hình thoi? hình chữ nhật?
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH.
a, Chứng minh tam giác BHA ~ tam giác BAC. Từ đó suy ra BA2 = BH.BC
b, Lấy I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng: CH.CB = CI.CK
c, Tia BK cắt HA tại D. Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh rằng góc BMD = 90o