Kẻ AK⊥BC tại K
Ta có: ΔABC cân tại A(gt)
mà AK là đường cao ứng với cạnh đáy BC(gt)
nên AK là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)
⇔K là trung điểm của BC
⇔\(BK=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABK vuông tại K, ta được:
\(AK^2+BK^2=AB^2\)
\(\Leftrightarrow AK^2=AB^2-BK^2=15^2-5^2=200\)
hay \(AK=10\sqrt{2}\left(cm\right)\)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(Hai cạnh bên)
mà AB=15cm(gt)
nên AC=15cm
Xét ΔABC có
AK là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AK\cdot BC}{2}\)(1)
Xét ΔABC có
BH là đường cao ứng với cạnh AC(gt)
nên \(S_{ABC}=\dfrac{BH\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AK\cdot BC=BH\cdot AC\)
\(\Leftrightarrow BH\cdot15=10\sqrt{2}\cdot10\)
\(\Leftrightarrow BH\cdot15=100\sqrt{2}\)
\(\Leftrightarrow BH=\dfrac{100\sqrt{2}}{15}=\dfrac{20\sqrt{2}}{3}\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(BH^2+AH^2=AB^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=15^2-\left(\dfrac{20\sqrt{2}}{3}\right)^2\)
\(\Leftrightarrow AH^2=225-\dfrac{800}{9}=\dfrac{1225}{9}\)
hay \(AH=\dfrac{35}{3}cm\)
Vậy: \(AH=\dfrac{35}{3}cm\)