Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Cho tam giác ABC có Ab<AC. Trê 2 cạnh AB,AC. LẤy tương ứng 2 điểm D và E sao cho BD=CE. Gọi M,N,I lần lượt là trung điểm BC,DE,CD. Đường thẳng MN cắt AB và AC tại P và Q. Chứng minh:
a, tam giác MIN cân
b, tam giác APQ cân
c, MN song song đường phân giác góc A của tam giác ABC
Tam giác ABC cân tại A,AB=AC. Tia phân giác góc B và C cắt AC và AB lần lượt tại D và E. Chứng Minh:
a, Tam giác AED cân đỉnh A.
b,DE song song BC
c,BE=ED=DC
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Cho tam giác ABC cân tại A có AM là phân giác ( M thuộc BC) . Từ C vẽ 1 đường thẳng // AM cắt AB tại E. Chứng minh tam giác ACE cân
Cho tam giác ABC vuông tại A và AB nhỏ hơn AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Vẽ tia phân giác góc BAC cắt BC tại E.
a) Chứng minh tam giác AEB = tam giác AED
b) Gọi F là giao điểm của DE và tia AB. Chứng minh tam giác EBF = tam giác EDC
c) Gọi M là trung điểm của BD, chứng minh tam giác AMB = tam giác AMD
d) Chứng minh 3 điểm A, M, E thẳng hàng.
Cho tam giác ABC vuông tại A, biết góc ACB = 40 độ
a) Tính góc ABC
b) Phân giác của góc B cắt AC tại D. Lấy E thuộc BC sao cho BE = BA.
Chứng minh: Tam giác BDA = tam giác BDE
c) Qua B kẻ đường thẳng xy vuông góc với AB. Từ A kẻ đường song song với BD, cắt xy tại K
Chứng minh: AK = BD
d) Qua C kẻ đường vuông góc với BD tại H và cắt tia BA tại F.
Chứng minh: Ba điểm E; D; F thẳng hàng
( Các bạn biết giải câu d xin ghi cách giải giùm tớ. Cảm ơn)
Cho tam giác ABC có AB = AC. Lấy điểm M là trung điểm của BC.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh AM là đường trung trực của BC.
c) Từ M vẽ MH vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm E sao cho H là trung điểm của ME. Chứng minh CA là tia phân giác của góc MCE.
d) Đường thẳng đi qua M và song song với CE cắt AE tại P. Chứng minh MP vuông góc với AE.