Cho tam giác ABC vuông tại A . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC ; d là tiếp
tuyến của đường tròn tại A . Các tiếp tuyến của đường tròn tại B và C cắt d theo thứ tự ở D và E .
a) Tính góc DOE .
b) Chứng minh : DE = BD + CE .
c) Chứng minh : BD.CE = R^2 ( R là bán kính đường tròn tâm O )
d) Chứng minh BC là tiếp tuyến của đường tròn có đường kính DE .
Cho tam giác ABC nhọn, nội tiếp đường tròn (O), Các đường cao BE,CF cắt nhau tại H
a)Chứng minh AKHN nội tiếp đường tròn và xác định tâm của đường tròn ngoại tiếp tứ giác đó.
b)AK.NB=AN.KC.
c)Chứng Minh BKNC nội tiếp.Xác định tâm của đường tròn ngoại tiếp tứ giác đó.
d)Chứng minh AH⊥BC.
f)Đường thẳng BE , CF cắt đường tròn tại P , Q. Chứng minh cung AP = cung AQ
Cho tam giác ABC nội tiếp đường tròn tâm o. có 3 đường cao AD, BE, CF cắt nhau tại H. a)Chứng minh: BDHF và BFEC là tứ giác nội tiếp b) EF cắt BC tại G. Chứng minh: FC là phân giác góc EFD và BD.CG=BG.CD d) M,N là hình chiếu của H lên DF và EF, giao điểm MN và AH là I, EI và DF cắt nhau tại K. CM I là trung điểm của
Cho đường tròn (O) và 1 điểm A nằm ngoài đường tròn (O). Qua điểm A vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B, C là các tiếp điểm). AO cắt BC tại D
a/ Chứng minh tam giác ABC cân tại A và AO là đường trung trực của BC
b/ Vẽ đường kính BE, AE cắt đường tròn (O) tại F. Gọi G là trung điểm của EF, đường thẳng OG cắt đường thẳng BC tại H. Chứng minh tam giác AGO đồng dạng tam giác HDO
c/ Chứng minh EH là tiếp tuyến của đường tròn (O)
Cho tam giác ABC(AB=AC) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D câu a chứng minh :AD là đường kính câu b tính góc ACD câu c biết AC=AB=20cm,BC=24cm tính bán kính của đường tròn tâm (O)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;F;E;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác ABC vuông cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm. a/ Tính các góc và các cạnh còn lại của tam giác ABC. b/ Dựng đường tròn tâm (O) ngoại tiếp tam giác ABC, tính độ dài bán kính của đường tròn tâm O.
cho tam giác nhọn abc nội tiếp đường tròn (o).các đường cao ad,be,cf cắt nhau tại h.ad kéo dài cắt nhau tại điểm k(k khác a).đường thẳng ef cắt (o) tại m và n(f nằm giữa e và m). a,chứng minh d là trung điểm của hk. b,chứng minh oa vuông góc với mn. c,chứng minh am là tiếp tuyến của đường tròn ngoại tiếp tam giác mdh.
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng