a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
c: Ta có: AB=AC
HB=HC
Do đó: AH là đường trung trực của BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
c: Ta có: AB=AC
HB=HC
Do đó: AH là đường trung trực của BC
Cho tam giác ABC vuông tại A. Cạnh huyền BC=2AB. D thuộc AC sao cho góc ABD= 1/2ABC. E thuộc AB sao cho góc ACE= 1/3ACB. Gọi F là giao của BD và CE. G và H là các điểm được lấy sao cho BC là trung trực FG. AC là trung trực FH. CMR: H,C,G thẳng hàng
Cho tam giác ABC cân tại A. Trên cạnh BC lấy 1 điểm D( BD < DC) .Trên tia đối của tia CB lấy điểm E sao cho BD= CE. Qua D và E kẻ các đường vuông góc với BC cắt AB và AC lần lượt tại M và N.
a) Chứng minh: DM= EN
b) Gọi I là giao điểm của MN với BC. Chứng minh: I là trung điểm của MN
c) Qua I kẻ đường vuông góc với MN cắt phân giác của góc BAC tại O.
Chứng minh: tma giác ABO= ACO
d) Chứng minh: OC vuông góc với AN
Cho tam giác ABC có AB = AC , góc B = góc C . Kẻ BD vuông góc với AC và kẻ CE vuông góc với AB . Hai đoạn thẳng BD và CE cắt nhau tại I .
a) Chứng minh rằng tam giác BDC = tam giác CEB
b) So sánh góc IBE và góc ICD
c) Đường thẳng AI cắt BC tại trung điểm H . Chứng minh rằng AI vuông góc với BC
B1:cho tam giác ABC, A= 90 đọ. AB= AC, qua A kẻ đường thẳng xy. Vẽ BD vuông góc xy. Tại D, CE vuông góc với xy tại E.CMR:
a) tam giác ABD= tam giác ACE
b) DE= BD+ CE
B2:Cho tam giác ABC có góc A= 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ AD vuông góc với AB và AD= AB. Trên nửa mặt phẳng bờ AC có chứa điểm B. Vẽ AE vuông góc với AC. Kẻ AH vuông góc với ED tại H. CMR: đường thẳng AH đi qua chung điểm cạnh BC.
Cho tam giác ABC có AB=AC. Kẻ BD vuông góc với AC, CE vuông góc với AB ( D thuộc AC, E thuộc AB).Gọi O là giao điểm của BD và CE.CM:
a/ BD+CE
b/ tam giác OEB = tam giác ODC
c/ AO là tia phân giác của góc BAC
3. Cho tam giác ABC cân tại A, góc A < 90o. Kẻ BD vuông góc với AC, CE vuông góc với AB,BD và CE cắt nhau tại H
a) CM: BD = CE
b) Tam giác BHC cân
c) CM: AH là đường trung trực của BC
d) Trên tia BD, lấy K sao cho D là trung điểm BK. So sánh góc ECB và góc DKC
Cho tam giác ABC vuông tại A (AB < AC). D thuộc tia đối của tia AC, AD=AB. E thuộc tia đối của tia AB, AE=AC
a) Chưng minh BC = DE
b) Chứng minh: Tam giác ABD vuông cân và BD song song với CE
c) Kẻ đường cao AH của tam giác ABC. AH cắt DE tại M. Kẻ AK vuông góc với MC. AK cắt BD tại N. Chứng minh NM song song với AB
d) CM AM=1/2 DE
Cho tam giác ABC vuông ở A, phân giác BD. Kẻ DE vuông góc với BC ( E thuộc BC ). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. CMR:
a) BD là trung trực của AE
b) AD < BC
c) Ba điểm D , E , F thẳng hàng
mong nhận được sự giúp đỡ từ thầy cô và các bạn
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
d) Chứng minh Dn vuông góc DH