Ôn tập: Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Luna

Cho tam giác ABC, các góc B và C nhọn. Hai đường cao BE và CF cắt nhau tại H. Chứng minh rằng:

a) AB.AF=AC.AE

b) tam giác AEF đồng dạng với tam giác ABC

c) BH.BE + CH.CF = BC2

Nguyễn Tấn Dũng
6 tháng 4 2017 lúc 23:32

ABCFEHK

a) Xét \(\bigtriangleup\) AFC và \(\bigtriangleup\) AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}\) =90o

\(\Rightarrow\) \(\bigtriangleup\)AFC đồng dạng với \(\bigtriangleup\) AEB(g.g)

\(\Rightarrow\) \(\dfrac{AF}{AE}=\dfrac{AC}{AB}\)

\(\Rightarrow\) \(AB.AF=AE.AC\)

b)\(\dfrac{AF}{AE}=\dfrac{AC}{AB}\) \(\Rightarrow\) \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét \(\bigtriangleup\) AEF và \(\bigtriangleup\) ABC có:

\(\widehat{BAC}\) chung

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\Rightarrow\) \(\bigtriangleup\) AEF đồng dạng với \(\bigtriangleup\) ABC(c.g.c)

c) Từ H vẽ HK\(\perp\)BC

Xét \(\bigtriangleup\) BKH và \(\bigtriangleup\) BEC có:

\(\widehat{HBC}\) chung

\(\widehat{BKH}=\widehat{BEC}\) =90o

\(\Rightarrow\) \(\bigtriangleup\)BKH đồng dạng với \(\bigtriangleup\)BEC (g.g)

\(\Rightarrow\) \(\dfrac{BK}{BE}=\dfrac{BH}{BC}\)

\(\Rightarrow\) BH.BE=BK.BC(1)

Xét \(\bigtriangleup\) CKH và \(\bigtriangleup\) CFB có:

\(\widehat{BCH}\) chung

\(\widehat{CKH}=\widehat{CFB}\) =90o

\(\Rightarrow\) \(\bigtriangleup\) CKH đồng dạng với \(\bigtriangleup\) CFB(g.g)

\(\Rightarrow\) \(\dfrac{CK}{CF}=\dfrac{CH}{BC}\)

\(\Rightarrow\) CH.CF=BC.CK(2)

Cộng (1) với (2) ta được:

BH.BE+CH.CF=BK.BC+CK.BC=BC.(CK+BK)=BC.BC=BC2

\(\Rightarrow\) BH.BE+CH.CF=BC2

Chúc bạn học tốt.haha


Các câu hỏi tương tự
nguyễn linh
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Girl Xanhh
Xem chi tiết
Anh Duy Vũ
Xem chi tiết
Vũ Bùi Trung Hiếu
Xem chi tiết
Jojoi Emu
Xem chi tiết
Võ Trịnh Thái Bình
Xem chi tiết
Huong To
Xem chi tiết
anh
Xem chi tiết