a) Xét \(\bigtriangleup\) AFC và \(\bigtriangleup\) AEB có:
\(\widehat{BAC}\) chung
\(\widehat{AFC}=\widehat{AEB}\) =90o
\(\Rightarrow\) \(\bigtriangleup\)AFC đồng dạng với \(\bigtriangleup\) AEB(g.g)
\(\Rightarrow\) \(\dfrac{AF}{AE}=\dfrac{AC}{AB}\)
\(\Rightarrow\) \(AB.AF=AE.AC\)
b)\(\dfrac{AF}{AE}=\dfrac{AC}{AB}\) \(\Rightarrow\) \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)
Xét \(\bigtriangleup\) AEF và \(\bigtriangleup\) ABC có:
\(\widehat{BAC}\) chung
\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\Rightarrow\) \(\bigtriangleup\) AEF đồng dạng với \(\bigtriangleup\) ABC(c.g.c)
c) Từ H vẽ HK\(\perp\)BC
Xét \(\bigtriangleup\) BKH và \(\bigtriangleup\) BEC có:
\(\widehat{HBC}\) chung
\(\widehat{BKH}=\widehat{BEC}\) =90o
\(\Rightarrow\) \(\bigtriangleup\)BKH đồng dạng với \(\bigtriangleup\)BEC (g.g)
\(\Rightarrow\) \(\dfrac{BK}{BE}=\dfrac{BH}{BC}\)
\(\Rightarrow\) BH.BE=BK.BC(1)
Xét \(\bigtriangleup\) CKH và \(\bigtriangleup\) CFB có:
\(\widehat{BCH}\) chung
\(\widehat{CKH}=\widehat{CFB}\) =90o
\(\Rightarrow\) \(\bigtriangleup\) CKH đồng dạng với \(\bigtriangleup\) CFB(g.g)
\(\Rightarrow\) \(\dfrac{CK}{CF}=\dfrac{CH}{BC}\)
\(\Rightarrow\) CH.CF=BC.CK(2)
Cộng (1) với (2) ta được:
BH.BE+CH.CF=BK.BC+CK.BC=BC.(CK+BK)=BC.BC=BC2
\(\Rightarrow\) BH.BE+CH.CF=BC2
Chúc bạn học tốt.