Cho tam giác ABC ,các đường đồng quy BM và CN.Trên Bc lấy D và E sao cho BD=DE=EC.Gọi H là giao điểm của AD và CN .
a) CMR: 3 đường thẳng MK,NH vÀ BC đồng quy
b)Giả sử BC=6 cm . Tính H K
Ai giúp em với ạ, em đang cần rất gấp ạ
Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB,AC lấy hai điểm D,E sao cho AD=AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC
a) CM tam giác MDC cân
b) CM HK=HC
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH
Cho tam giác nhọn ABC. Kẻ đường trung tuyến AM lên cạnh BC. Trên cạnh AB lần lượt lấy 2 điểm D và E sao cho AD= DE = EB = 1/3 AB. Chứng minh:
a) EM là đường trung bình của tam giác BDC. Chứng minh: EDCM là hình thang
b) Gọi I là giao điểm của DC với AM. Chứng minh: DIME là hình thang và I là trung điểm AM
1.cho tam giác abc các đường phân giác AD,BE,CF gọi I và K là các điểm đối xứng với A qua BE,CF. Gọi G và H thứ tự thứ tự là các điểm đối xứng với B và C qua AD. CMR:GI//HK
2.Cho tam giác ABC, D thuộc BC. Lấy M thuộc AD, lấy I và K thuộc MB và Mc sao cho IB/IM=KC/KM
E là giao điểm của ID với AB. F là giao điểm của KD với AC. CMR EF//BC
Cho hình bình hành ABCD, O là giao 2 đường chéo. E và F lần lượt là trung điểm OD và OB.
a) CM: AE // CF
b) Gọi K là giao của AE và DC. Cm DK = \(\frac{1}{2}\)KC
Cho tam giác ABC, trên AB lấy các điểm D và E sao cho AC = BE. Qua D và E vẽ các đường thẳng // với BC. Chúng cắt AC theo thứ tự tại M và N.
Chứng minh: DM + EN = BC
GIÚP MÌNH VỚI TỐI NAY MÌNH ĐI HỌC RỒI
Cho hình thang ABCD (AB// CD). Gọi E là giao điểm của 2 đường thẳng AD và BC. Gọi M, N, P, Q theo thứ tự là các trung điểm của của các đoạn thẳng AE, BE, AC, BD. chứng minh tứ giác MNPQ là hình thang.
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho CN=BM. Từ M kẻ MI song song với AC (I thuộc cạnh bC). Gọi O là giao điểm của MN và BC. CMR: OM=ON