Cho tam giác ABC cân tại A có AB=1 và BAC=120o .Gọi M là điểm thuộc cạnh AC sao cho AM=2MC.Xác định điểm N trên cạnh BC sao cho AN vuông góc BM
cho tam giác ABC .M,N lần lượt thuộc AB,BC sao cho AM=3MB, NC=2BN. I là giao của AM và CM . CMR:\(\overrightarrow{NI}=\dfrac{2}{11}\overrightarrow{NA}\)
Cho tam giác ABC cân tại A, gọi H,K lần lượt là trung điểm của BC và AC
Cm tg ABHK là hình thang.
Trên tia đối tia HA lấy điểm E sao cho H là trung điểm của các cạnh AE. Cm tg ABEC là hình thoi.
Qua A vẽ đường thẳng vuông góc với AH cắt tia HK tại D. Cm AD = BH.
VẼ HN vuông góc AB tại N, gọi I là trung điểm của AN. Trên tia đối của BH lấy điểm M sao cho B là tđ của HM. Cm MN vuông góc với HI
Cho tam giác ABC trung tuyến AM,I là trung điểm AM,K thuộc AC sao cho CK=2AK
a)Phân tích vecto BI theo vecto AB,AC
b)Phân tích vecto BK theo vecto AB,AC
c)Chứng minh: 3 điểm B,I,K thẳng hàng
Bài 1:Cho ΔABC vuông tại A (AB < AC).Gọi M là điểm thuộc cạnh huyền BC.Kẻ MI vuông góc với AB tại I,MK vuông góc với AC tại K
a,C/m AM=IK
b,Gọi H là điểm đối xứng với điểm A qua K. C/m tứ giác IMHK là hbh
c,Gọi O là giao điểm của AM và IK;E là giao điểm của MK và IH.C/m:OE//AC
Bài 2:C/m rằng:Nếu a,b,c là độ dài 3 cạnh của ΔABC thỏa mãn đk:a^2+b^2+c^2=ab+ac+bc thì Δ ABC là Δ đều
Bài 4 :
Cho 5 điểm M , N , P , Q , R biết : điểm P nằm giữa hai điểm M và N , điểm Q nằm giữa hai điểm N và P , điểm R nằm giữa 2 điểm P và M :
a) CMR : 5 điểm đã cho thẳng hàng .
b) CMR : P nằm giữa Q và R .
c) Cho NP = 13cm , PR = 10cm , QR = 21cm , MP = 14 cm . Tính NQ , MR .
Bài 5 :
Cho đoạn thẳng AB = 15 cm , lấy 1 điểm C nằm trên đường thẳng AB sao cho AC = 6 cm và 1 điểm D thuộc đường thẳng AB sao cho BD = 4 cm . Tính độ dài CD .
Bài 1: Cho tam giác ABC có 3 góc nhọn. Kẻ đường cao BD, CE của tam giác. Gọi F, K lần lượt là hình chiếu của E, D trên BC. M là trung điểm của BC. a, CMR: tam giác MED cân
b, CMR: AE*AB=AD*AC
c, CMR: \(\dfrac{BE}{CK}=\left(\dfrac{BE}{DC}\right)^3\)
Bài 5: Cho tam giác ABC vuông tại A (AB<AC). Từ trung điểm của 1 cạnh AC kẻ đường vuông góc với BC tại D. CMR: BD^2-CD=AB
Mk thấy đề này có j sai sai? Sửa lại rồi làm cho mk nha! ^-^"
Cho tam giác ABC vuông tại A
Có BC=2AB,tia phân giác BD (D thuộc AC) lấy M là trung điểm của BC. Chứng minh
a, tam giác ABD=tam giác MBD
b, gọi N là giao điểm của AB và MD. Chứng minh rằng MN=AC
Cho tam giác ABC vuông tại A , đường phân giác của góc ABC cắt AC tại D , gọi E là hình chiếu vuông góc của D trên BC .
a) Tính AB nếu AC = 6 cm , BC = 7.5 cm
b) Chứng minh tam giác ABD = tam giác EBD
c) Trên tia đối của tia AB lấy điểm F , sao cho AF = EC . CHứng minh rằng E , D , F thẳng hàng