a) Phương trình đường thẳng AB đi qua 2 điểm A và B là: \(\frac{{x - 1}}{{ - 1 - 1}} = \frac{{y - 3}}{{ - 1 - 3}} \Leftrightarrow \frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 4}} \Leftrightarrow 2x - y + 1 = 0\)
Phương trình đường thẳng AC đi qua 2 điểm A và C là: \(\frac{{x - 1}}{{5 - 1}} = \frac{{y - 3}}{{ - 3 - 3}} \Leftrightarrow \frac{{x - 1}}{4} = \frac{{y - 3}}{{ - 6}} \Leftrightarrow 3x + 2y - 9 = 0\)
Phương trình đường thẳng BC đi qua 2 điểm B và C là:
\(\frac{{x + 1}}{{5 + 1}} = \frac{{y + 1}}{{ - 3 + 1}} \Leftrightarrow \frac{{x + 1}}{6} = \frac{{y + 1}}{{ - 2}} \Leftrightarrow x + 3y + 4 = 0\)
b) Gọi d là đường trung trực của cạnh AB.
Lấy N là trung điểm của AB, suy ra \(N\left( {0;1} \right)\).
Do \(d \bot AB\) nên ta có vecto pháp tuyến của d là: \(\overrightarrow {{n_d}} = \left( {1;2} \right)\)
Vậy phương trình đường thẳng d đi qua N có vecto pháp tuyến \(\overrightarrow {{n_d}} = \left( {1;2} \right)\) là:
\(1\left( {x - 0} \right) + 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 2 = 0\)
c) Do AH vuông góc với BC nên vecto pháp tuyến của AH là \(\overrightarrow {{n_{AH}}} = \left( {3; - 1} \right)\)
Vậy phương trình đường cao AH đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AH}}} = \left( {3; - 1} \right)\)là: \(3\left( {x - 1} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow 3x - y = 0\)
Do M là trung điểm BC nên \(M\left( {2; - 2} \right)\). Vậy ta có: \(\overrightarrow {AM} = \left( {1; - 5} \right) \Rightarrow \overrightarrow {{n_{AM}}} = \left( {5;1} \right)\)
Phương trình đường trung tuyến AM đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AM}}} = \left( {5;1} \right)\) là:
\(5\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 5x + y - 8 = 0\)