cho tam giác ABC, đường cao AD. gọi M, N theo thứ tự là các điểm đối xứng của D qua các cạnh AB, AC và E,F theo thứ tự là giao điểm của MN với AB và AC. C/m AD là phân giác của góc EDF
Cho DABC, kẻ phân giác trong và ngoài của góc B cắt AC ở I và D. Từ C kẻ đường thẳng song song với AB cắt BI, BD lần lượt tại E, F.
Chứng minh IB.IC = IA.IE;
Chứng minh CE = CF.
Từ I, D kẻ đường thẳng song song với BC cắt đường thẳng AB lần lượt tại M, N. Tính độ dài AB, MN; EF nếu MI = 4cm và BC = 12cm.
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH.CD = BD.CH
ai giúp mik phần b với
cho tam giác ABC (AB < AC), đường phân giác AD. Qua trung điểm M của BC, kẻ đường thẳng song song với AD cắt AC và AB lần lượt ở E và K
a) Chứng minh AK=AE
b)Chứng minh BE=CK
ai giúp mik phần b với
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng:
a) AB là tia phân giác của góc DAH.
b) BH.CD = BD.CH
Cho tam giác ABC ( AB<AC ) , góc B tù . Kẻ phân giác trong AD , phân giác ngoài AE . Kẻ đường thẳng song song với AB và đi qua C cắt AD , EA tại I,K
a, CMR : C là trung điểm của IK ( gợi ý : AB/CK=AB/CI
b, Đường thẳng song song với AC đi qua B cắt AD,EA tại I',K'. CMR : B là trung điểm I'K'
Cho ABC vuông tại A , đường cao AH Chứng minh : ABH - CBA . Từ đó tính BH khi AB = 6 cm , AC = 8 cm . b ) Gọi P , Q lần lượt là trung điểm của CH , AH . Đường thẳng BQ cắt đường thẳng AP tại N , đường thẳng PQ cắt đường thẳng AB tại M. Chứng minh : Q là trực tâm tam giác ABP c ) Chứng minh : NB là tia phân giác của góc MNH
Cho tam giác ABC có BC < BA, đường phân giác BE và trung tuyến BD ( E và D thuộc AC). Đường thẳng vuông góc với BE kẻ từ C cắt BE,BD tại F và G. Chứng minh rằng:a)GE//BCb)DF đi qua trung điểm của GE