Cho tam giác ABC vuông cân tại A , điểm D nằm giữa B và C ( AD không vuông góc với BC ) . Gọi E và F là hình chiếu của B và C trên AD a) So sánh BC với BE + CF b) Tam giác ABE = tam giác CAF c)BE mũ 2 + CF mũ 2 = AB mũ 2 d) gọi m là trung điểm của BC , chứng minh tam giác MBE = tam giác MAF e ) Tam giác MEF vuông cân
cho tam giác ABC (AB khác AC). gọi M là một điểm nằm giữa B và C. gọi E và F là hình chiếu của B và C xuống đường thẳng AM. so sánh BE+CF và BC
Cho tam giác ABC có AB khác AC. Lấy điểm M sao cho M nằm giữa B và C. Gọi E, F lần lượt là hình chiếu của B và C xuống AM. So sánh BE+CF với BC.
Cho tam giác ABC, điểm D nằm giữa A và C (BD không vuông góc với AC). Gọi E và F là chân các đường vuông góc kẻ tử A và C đến đường thẳng BD. So sánh AC với tổng AE + CF ?
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc lần lượt kẻ từ A và C đến đường thẳng BM.
a )Chứng minh ME = MF?
b)So sánh AB và BE + BF/ 2
cho tam giác ABC có C < B. Gọi H là hình chiều của A trên đường thẳng BC. Trên tia BH lấy điểm D sao cho HB = HD. Gọi E là hình chiếu của D trên đường thẳng AC và K là hình chiếu của C trên đường thẳng AD. Chứng minh rằng:
a)D nằm trên HC
b)DE=DK
2. Cho tam giác ABC nhọn. D thuộc AC, E và F là hình chiếu của A và C xuống BD. So sánh AC với AE+CF
cho tam giác ABC có AB khác AC. M nằm giữa B và C. E và F lần lượt là hình chiếu của B và C xuống AM. So sánh BE+CF với BC
Cho △ AB, điểm D nằm giữa B và C. Gọi H, K lần lượt là chân các đường vuông góc kẻ từ D xuống các đường thẳng AB, AC. So sánh BC và tổng DH+DK