Cho hình chóp S.ABC có tam giác ABC vuông tại A, góc ABC=60 , SB=AB=a , hai mặt bên (SAB) và (SBC) cùng vuông góc với mặt đáy . Gọi H,K lần lượt là hình chiếu vuông góc của B trên SA,SC .
1. Chứng minh : SB\(\perp\) (ABC) và SC \(\perp\) (BHK) .
2. TÍnh góc tạo bởi SA và (BHK) .
Hình chóp tam giác S.ABC có đáy là tam giác đều ABC cạnh 7a, có cạnh SC vuông góc với mặt phẳng đáy (ABC) và SC = 7a
a) Tính góc giữa SA và BC
b) Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC
Hình chóp A.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA bằng a và vuông góc với mặt phẳng (ABCD)
a) Chứng minh rằng các mặt bên kia của hình chóp là những tam giác vuông
b) Mặt phẳng \(\left(\alpha\right)\) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, SC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB
Cho chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a, SA=\(a\sqrt{3}\), SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC ?
Cho chóp S.ABCD có đáy là hình vuông cạnh a, SA⊥(ABCD), SA=\(a\sqrt{6}\). Tính góc α giữa đường SC và mặt phẳng (SAD)
Cho S.ABCD có đáy là hình chữ nhật, AB=a,SA vuông góc mặt phẳng đáy, SC hợp với mặt phẳng đáy góc 45° và hợp với (SAB) góc 30. Tính góc giữa (SBC) và mặt phẳng đáy?
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a có góc \(\widehat{BAD}=60^0\) và \(SA=SB=SD=\dfrac{a\sqrt{3}}{2}\) :
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD)
c) Chứng minh SB vuông góc với BC
d) Gọi \(\varphi\) là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính \(\tan\varphi\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\). Tính góc giữa SC và mp (SAB) ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và \(SA\perp\left(ABCD\right)\)
a) Chứng minh \(BD\perp SC\)
b) Chứng minh \(\left(SAB\right)\perp\left(SBC\right)\)
c) Cho \(SA=\dfrac{a\sqrt{6}}{3}\). Tính góc giữa SC và mặt phẳng (ABCD)