Giải:
a)
\(S=1+2+4+8+...+256+512\)
\(\Leftrightarrow S=\left(1+2\right)+\left(4+8\right)+...+\left(256+512\right)\)
\(\Leftrightarrow S=\left(1+2\right)+4\left(1+2\right)+...+256\left(1+2\right)\)
\(\Leftrightarrow S=3+4.3+...+256.3\)
\(\Leftrightarrow S=3\left(1+4+...+256\right)⋮3\)
Hay \(S=1+2+4+8+...+256+512⋮3\)
Vậy \(S⋮3\)
b) Ta có:
\(S=1+2+4+8+...+256+512⋮3\)
\(\Leftrightarrow S=3\left(1+4+...+256\right)\)
\(\Leftrightarrow S=3\left(1+\dfrac{\left(64+1\right)64}{2}\right)\)
\(\Leftrightarrow S=3.2081=6243\)
Vậy \(S=6243\).
Chúc bạn học tốt!