Ta có: \(2014S=2014\left(1+2014+2014^2+2014^3+...+2014^{2013}\right)\)
\(2014S=2014+2014^2+2014^3+2014^4+...+2014^{2014}\)
\(2014S-S=\left(2014+2014^2+2014^3+2014^4+...+2014^{2014}\right)-\left(1+2014+2014^2+2014^3+...+2014^{2013}\right)\)
\(2013S=2014^{2014}-1\)
\(S=\dfrac{2014^{2014}-1}{2013}\)
\(P-S=\dfrac{2014^{2014}}{2013}-\dfrac{2014^{2014}-1}{2013}=\dfrac{1}{2013}\)