a) \(S=2+2^2+2^3+...+2^{100}\)
Ta có : \(2S=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2S-S=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow2S-S=\left(2^2+2^3+2^4+...+2^{100}\right)+2^{101}-2-\left(2^2+2^3+2^4+...+2^{100}\right)\)
\(\Rightarrow S=2^{101}-2\)
Vậy \(S=2^{101}-2\)