Lời giải:
ĐKXĐ: \(x\geq 1; x\neq 2\)
a)
\(Q^2=\frac{x-\sqrt{2(x-1)}+x+\sqrt{4(x-1)}+2\sqrt{(x-\sqrt{4(x-1)})(x+\sqrt{4(x-1)}}}{x^2-4(x-1)}\)
\(=\frac{2x+2\sqrt{x^2-4(x-1)}}{x^2-4(x-1)}=\frac{2x+2\sqrt{x^2-4x+4}}{x^2-4x+4}\)
\(=\frac{2x+2\sqrt{(x-2)^2}}{x^2-4x+4}=\frac{2x+2|x-2|}{(x-2)^2}\)
Vì $Q$ không âm nên \(Q=\sqrt{\frac{2x+2|x-2|}{(x-2)^2}}=\frac{\sqrt{2x+2|x-2|}}{|x-2|}\)
b)
Với $x=2019$ ta có: \(Q=\frac{\sqrt{2.2019+2|2019-2|}}{|2019-2|}=\frac{\sqrt{8072}}{2017}\)
Lời giải:
ĐKXĐ: \(x\geq 1; x\neq 2\)
a)
\(Q^2=\frac{x-\sqrt{2(x-1)}+x+\sqrt{4(x-1)}+2\sqrt{(x-\sqrt{4(x-1)})(x+\sqrt{4(x-1)}}}{x^2-4(x-1)}\)
\(=\frac{2x+2\sqrt{x^2-4(x-1)}}{x^2-4(x-1)}=\frac{2x+2\sqrt{x^2-4x+4}}{x^2-4x+4}\)
\(=\frac{2x+2\sqrt{(x-2)^2}}{x^2-4x+4}=\frac{2x+2|x-2|}{(x-2)^2}\)
Vì $Q$ không âm nên \(Q=\sqrt{\frac{2x+2|x-2|}{(x-2)^2}}=\frac{\sqrt{2x+2|x-2|}}{|x-2|}\)
b)
Với $x=2019$ ta có: \(Q=\frac{\sqrt{2.2019+2|2019-2|}}{|2019-2|}=\frac{\sqrt{8072}}{2017}\)