Cho phương trình x2 - 2(m + 3)x + m2 + 3 = 0 Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn (2x1 - 1)(2x2 - 1) = 9
Cho pt bậc 2 : x^2-2(m+1)x-3=0. Tìm điều kiện của m để pt có 2 nghiệm x1,x2 thỏa mãn x1^2+x2^2=10
Cho phương trình x2 + 2(m - 1)x - 2m + 5 =0 ( m là tham số). Tìm giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn 2x1 + 3x2 = -5
Cho PT: x2 - 2(m+1)x + 2m - 3 = 0
Tìm các giá trị của m để PT có 2 nghiệm phân biệt x1, x2 thỏa mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị nhỏ nhất.
Cho x1, x2 là nghiệm của pt x^2 -(m-1)x-2=0. Tìm m để pt có 2 nghiệm thỏa mãn x1/x2=x2^2-3/x1^2-3
Cho phương trình x2 - (2m+5)x +2m + 1 = 0 với m là tham số có 2 nghiệm dương phân biệt x1,x2 . Tìm m thỏa mãn ∣∣√x1−√x2∣∣|x1−x2| có giá trị nhỏ nhất.
1. Cho phương trình: x2 – 2(2m – 1)x + 8m - 8 = 0.(1)
a) Giải (1) khi m = 2.
b, Tìm m để phương trình có hai nghiệm phân biệt
c) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn A = đạt giá trị nhỏ nhất
Cho pt x²-2(m+1)+6m-4=0 (1)(với m là tham số)
a, chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để pt (1) có 2 nghiệm x1;x2 thỏa mãn (2m−2)x1+x22−4x2=4
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0