Thay nghiệm $x=3$ vào `pt`:
\(\Rightarrow3^2-3m+2m-5=0\Leftrightarrow-m=-4\Leftrightarrow m=4\)
`⇒pt: x^2-4m+3=0`
Theo đề thì `pt` đã có 2 nghiệm nên theo hệ thức Vi-et:
\(x_1+x_2=4\Leftrightarrow x_2=4-x_1=4-3=1\)
Vậy nghiệm còn lại là `1`
Thay nghiệm $x=3$ vào `pt`:
\(\Rightarrow3^2-3m+2m-5=0\Leftrightarrow-m=-4\Leftrightarrow m=4\)
`⇒pt: x^2-4m+3=0`
Theo đề thì `pt` đã có 2 nghiệm nên theo hệ thức Vi-et:
\(x_1+x_2=4\Leftrightarrow x_2=4-x_1=4-3=1\)
Vậy nghiệm còn lại là `1`
Cho pt: x2 - 2mx + 4m = 0 (1) và x2 - mx + 10m = 0 (2)
Tìm m để pt (2) có một nghiệm bằng 2 lần một nghiệm của pt (1)
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0
Cho PT : x2 - 2mx + 2m+1 =0
a) cho phương trình có nghiệm là -3 . tính nghiệm còn lại
b) chứng minh phương trình luôn có 2 nghiệm với mọi m
c) gọi x1 x2 là 2 nghiệm của phương trình tìm m để x1^2 + x2^2 + 2x1x2 = 16
Giải giúp mình với ạ !
Cho PT : 2x2 + (2m-1)x +m-1=0.Không giải PT , tìm m để PT có hai nghiệm . tìm m để x1 , x2 thỏa mãn 3x1 - 4x2 = 11. tìm m để pt có 2 nghiệm đều dương. tìm hệ thức liên hệ giữa các nghiệm ko phụ thộc vào m
Cho PT x2 - mx + m - 2 = 0. Tìm m để PT trên có 2 nghiệm x1, x2 sao cho biểu thức P = x1x2 - x12 - x22 đạt GTNN
cho pt: x2 -2(m+4)x+m2=0
a) giải phương trình với m=8
b)tìm m để pt có 2 nghiệm thỏa mãn: x12+x22 = -2
c)tìm m để 1 nghiệm là x = -2, tìm nghiệm còn lại
d)tìm m để pt có nghiệm kép! tìm nghiệm kép đó
Cho \(x^2\)+\(mx-2=0\)
Tìm m để pt có 2 nghiệm phân biệt sao cho \(x1^3-x2^3=9\)
Cho phương trình: x3- 5x2 + (2m+5)x-4m+2 = 0 (m là tham số )
a) Tìm đk của m để pt có 3 nghiệm phân biệt x1,x2,x3
b) Tìm gt của m để x12 + x22 + x32 = 11
Cho x1, x2 là nghiệm của pt x^2 -(m-1)x-2=0. Tìm m để pt có 2 nghiệm thỏa mãn x1/x2=x2^2-3/x1^2-3