bài 1, cho biểu thức: A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
a, Tìm điều kiện xác định, và rút gọn biểu thức A
b, Tính giá trị của A khi x=\(3-2\sqrt{2}\)
c, Tìm giá trị nhỏ nhất của A
bài 2, Cho biểu thức: A=\(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
a, Rút gọn biểu thức, ta được A=1 b, cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)tìm MAX A
a)Chứng minh rằng \(\left[\frac{1-x\sqrt{x}}{1-\sqrt{x}}\right].\left[\frac{1-\sqrt{x}}{1-x}\right]^2=1\)với \(x\ge0\)và \(x\ne1\)
b)So sánh \(\sqrt{2012}-\sqrt{2011}\)và \(\sqrt{2011}-\sqrt{2010}\)
c)Rút gọn biểu thức A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\) với \(x\ge0,y\ge0,x\ne y\)
d)Tìm giá trị lớn nhất của biểu thức M=\(\sqrt{x-1}+\sqrt{9-x}\)
Rut gon bieu thuc:
P=\(\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) voi \(x=\frac{1}{2}.\left(a+\frac{1}{a}\right)\); y=\(\frac{1}{2}.\left(b+\frac{1}{b}\right)\) va \(a\ge1;b\ge1\)
1, A=\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{2}{\sqrt{x}+1}\right):\frac{x-1}{\sqrt{x}}\) với x > 0
a, Rút gọn
b, Tìm x nguyên nhỏ nhất để A < 0
c, Tìm \(x\in Z\) để \(A\in Z\)
2, Rút gọn: \(\left(\frac{14}{\sqrt{14}}+\frac{\sqrt{12}+\sqrt{30}}{\sqrt{5}+\sqrt{2}}\right).\sqrt{5-\sqrt{21}}\)
3, Cho \(\left|x\right|< 1,\left|y\right|< 1\). Chứng minh \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
Bạn nào giúp mk thứ 2 phải nộp rồi!!!
Cho biểu thức P = (\(\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)+\(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\)):(\(\frac{x+y+2xy}{1-xy}\)+1) (x,y lớn hơn hoặc bằng 0; x khác y; x và y khác 1)
a) Rút gọn
b) Tính P tại x = \(\frac{2}{2+\sqrt{3}}\)
c) Chứng minh P bé hơn hoặc bằng 1
a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)
Cho biểu thức: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) Với x>0;x#1;x#4
a,Rút gọn P
b,Với giá trị nào của x thì P=\(\frac{1}{4}\)
c,Tính giá trị của P tại x=\(4+2\sqrt{3}\)
cho x,y> 0 thỏa mãn xy+x+y=1. Tính tổng
\(S=2x\sqrt{\frac{1+y^2}{1+x^2}}+2y\sqrt{\frac{1+x^2}{1+y^2}}+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
Cho P = \(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\)
a. Rút gọn P
b. Chứng minh P không đổi khi \(\frac{x}{y}=\frac{x+1}{y+5}\)