Cho phương trình:\(x^2\)\(-\left(m+1\right)\)\(x\)\(-2=0\) (với m là tham số). Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1\),\(x_2\) sao cho:
\(\left(1-\dfrac{2}{x_1+1}\right)^2\)\(+\left(1-\dfrac{2}{x_2+1}\right)^2=2\)
1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)
Cho phương trình \(x^2-2\left(k-1\right)-4k=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 phân biệt thỏa mãn 3x1-x2=2
Cho phương trình: \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) mà biểu thức M=\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt giá trị nhỏ nhất.
Cho phương trình \(x^2-\left(2m+1\right)x+m^2+m=0\)
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn \(-2< x_1< x_2< 2\)
Tìm hệ thức liên hệ giữa x1 và x2 không chứa m
Bài 1
Cho Phương trình \(x^2-\left(m+5\right)x+3m+6=0\) Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5.
Bài 2
Cho phương trình x2-2(m-3)x+2(m-1)=0, Tìm m để phuowngt rình có 2 nghiệm phân biệt sao cho biểu thức T=x12 + x22 đạt giá trị nhỏ nhất.
Cho phương trình :
\(x^2-2\left(m-1\right)x+m^2-3m=0\)
a) Xác định m để phương trình có 2 nghiệm phân biệt
b) Xác định m để phương trình có đúng 1 nghiệm âm
c) Xác định m để phương trình có 1 nghiệm bằng 0. Tìm nghiệm còn lại
d) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 của phương trình không phụ thuộc và m
e) Xác định m để phương trình có 2 nghiệm thỏa mãn \(x1^2+x2^2=8\)
Cho phương trình \(x^2-\left(m+1\right)x+m=0\left(1\right)\)(với m là tham số)
a.Giải phương trình (1) khi m=-2
b.Tìm giá trị của m để phương trình (1) có nghiệm phân biệt x1,x2 thỏa mãn:
(\(x^2_1-mx_1+x_2+2m\))\(\left(x^2_2-mx_2+x_1+2m\right)=9x_1x_2\)
1.cho phương trình \(x^2+5x+m-2=0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn hệ thức
\(\dfrac{1}{ \left( x_1-1\right)^2}+\dfrac{1}{\left(x_2-1\right)^2}=1\)
Cho phương trình \(x^2-4mx+3m^2-3=0\)
Tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\)thỏa mãn \(\left|\dfrac{x_1+x_2+4}{x_1+x_2}\right|\)đặt Max