\(\Delta=\frac{1}{4}-4m^2\ge0\Rightarrow x^2\le\frac{1}{16}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{1}{2}\\x_1x_2=m^2\end{matrix}\right.\)
\(P=x_1^3+x_1+x_2^3+x_2=\left(x_1^3+x_2^3\right)+x_1+x_2\)
\(P=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+x_1+x_2\)
\(P=-\frac{1}{8}+\frac{3}{2}m^2-\frac{1}{2}=\frac{3}{2}m^2-\frac{5}{8}\le\frac{3}{2}.\frac{1}{16}-\frac{5}{8}=-\frac{17}{32}\)
\(P_{max}=-\frac{17}{32}\) khi \(m=\pm\frac{1}{4}\)