a) ta có \(\Delta=\left(-m\right)^2-4\left(-1\right)1=m^2+4\ge4>0\forall m\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt (đpcm)
bài này nếu ai lanh sẽ thấy hệ số \(a\) và \(c\) trái dấu nên \(\Rightarrow\) (đpcm) luôn ; không cần trình bày dài dòng .
b) vì phương trình đã luôn có 2 nghiệm phân biệt rồi nên không cần tìm điện kiện để phương trình có 2 nghiệm phân biệt nữa .
áp dụng hệ thức vi - ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-1\\x_1+x_2=-m\end{matrix}\right.\)
ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\)
\(\Leftrightarrow\left(-m\right)^2-2\left(-1\right)=m^2+2=5\) \(\Leftrightarrow m^2=3\Leftrightarrow m=\pm\sqrt{3}\)
vậy \(m=-\sqrt{3};m=\sqrt{3}\)