\(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=4\left(m-1\right)^2+5>0\) \(\forall m\)
Phương trình đã cho luôn có 2 nghiệm phân biệt
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\)
\(x_1^3+x_2^3=27\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=27\)
\(\Leftrightarrow\left(2m-1\right)^3-3\left(m-2\right)\left(2m-1\right)-27=0\)
\(\Leftrightarrow8m^3-18m^2+21m-34=0\)
\(\Leftrightarrow\left(m-2\right)\left(8m^2-2m+17\right)=0\)
\(\Rightarrow m=2\)