Tìm m để phương trình x2 - 2(m+1)x + m2 -1= 0 có hai nghiệm x1, x2 thỏa \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{6}\)
Cho phương trình x² – 2(m – 1)x + m² – 3m = 0. Tìm giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn x2 + 3x1 = –2. Giups với mn ơi !!!
1. Tìm nghiệm nguyên của phương trình:
\(x^2+2y^2-2xy+3x-3y+2=0\)
2. Tìm tất cả các số nguyên x,y thõa mãn phương trình
\(xy^3+y^2+4xy=6\)
3.Tìm nghiệm nguyên dương của phương trình
\(x^2+\left(x+y\right)^2=\left(x+9\right)^2\)
Cho phương trình :
\(9x^2+2\left(m^2-1\right)x+1=0\)
a) Chứng tỏ rằng với \(m>2\) phương trình có hai nghiệm phân biệt âm
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) mà \(x_1+x_2=-4\)
Cho pt x(x-1)(x-2)(x-4)(x-5)=m với m là 1 số để pt có 4 nghiệm x1, x2, x3, x4.
Tính : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{1}{x_3}+\dfrac{1}{x_4}\)
Giả sử phương trình \(ax^2+bx+c=0\left(a\ne0\right)\) có 2 nghiệm \(x_1,x_2\) thỏa mãn: \(\text{ax}_1+bx_2+c=0\). Tính \(A=a^2c+ac^2+b^3-3abc\)
Cho pt \(\left(m-1\right)x^2+3x-1=0\)
a) phương trình có nghiệm
b) p.t có 2 nghieemh p.biệt trái dấu
c) P.t có 2 nghiệm dương phân biệt thỏa mãn \(x_1x_2=x_1+x_2=3\)
Bài 1: Cho phương trình \(x^2-\left(m-1\right)x+m+4=0\). Tìm giá trị của m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(\left|x_1-x_2\right|=1\)
Bài 2: Tìm giá trị của m để phương trình \(\left|mx-x+1\right|=\left|x+2\right|\) có đúng 2 nghiệm phân biệt?
cho phương trình (m-1)x^2-2(m-2)x+m+3=0.tìm m sao cho pt có 2 nghiệm pb x1,x2 tm: x1^2.x2+x2^2.x1=1