Cho phương trình \(2x^2+2\left(m-1\right)x+m^2-1=0\). Tìm giá trị của m để phương trình có hai nghiệm phân biệt \(x_1;x_2\) thỏa mãn biểu thức \(A=\left(x_1-x_2\right)^2\) đạt giá trị lớn nhất?
Cho phương trình :
\(9x^2+2\left(m^2-1\right)x+1=0\)
a) Chứng tỏ rằng với \(m>2\) phương trình có hai nghiệm phân biệt âm
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) mà \(x_1+x_2=-4\)
Cho phương trình x² – 2(m – 1)x + m² – 3m = 0. Tìm giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn x2 + 3x1 = –2. Giups với mn ơi !!!
Cho phương trình :
\(\left(m+2\right)x^2+\left(2m+1\right)x+2=0\)
a) Xác định m để phương trình có hai nghiệm trái dấu và tổng hai nghiệm bằng -3
b) Với giá trị nào của m thì phương trình có nghiệm kép ? Tìm nghiệm kép đó ?
tìm m để phương trình \(\left(\dfrac{x^2-2x+1}{x^2+4x+4}\right)-m\left|\dfrac{x+2}{x-1}\right|=12\) có đúng 4 nghiệm
Tìm m để phương trình x2 - 2(m+1)x + m2 -1= 0 có hai nghiệm x1, x2 thỏa \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{6}\)
Định m để phương trình có 2 nghiệm x1, x2 biết rằng
\(x^2-4x+m+3=0\) \(\left|x_2-x_1\right|=2\)
Cho pt \(\left(m-1\right)x^2+3x-1=0\)
a) phương trình có nghiệm
b) p.t có 2 nghieemh p.biệt trái dấu
c) P.t có 2 nghiệm dương phân biệt thỏa mãn \(x_1x_2=x_1+x_2=3\)
Cho phương trình \(3x^2-2\left(m+1\right)x+3m-5=0\)
Xác định m để phương trình có một nghiệp gấp 3 lần nghiệm kia. Tính các nghiệm trong trường hợp đó ?