Phương trình có 2 nghiệm ⇔ △' ≥ 0 ⇔ m2 + 2m + 1 - 2m - 3 ≥ 0 ⇔ m ≥ \(\sqrt{2}\) hoặc m ≤ \(-\sqrt{2}\)
Theo hệ thức Vi-et có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=2m+3\end{matrix}\right.\)
Ta có: |x1 - x2| = 2 => (|x1 - x2|)2 = (x1 - x2)2 = 4
⇔ (x1 + x2)2 - 4x1.x2 = 4
⇔ (2m+2)2 - 4(2m+3) = 4
⇔ 4m2 + 8m + 4 - 8m - 12 - 4 = 0
⇔ 4m2 - 12 = 0
⇔ \(4\left(m-\sqrt{3}\right)\left(m+\sqrt{3}\right)\) = 0
⇔ m = \(\pm\sqrt{3}\) (t/m)