Xét phương trình có \(\Delta=\left(-5\right)^2-4.3=25-12=13>0\)
=> Phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\)
Theo hệ thức Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=\frac{5}{3}\\x_1x_2=\frac{c}{a}=\frac{1}{3}\end{matrix}\right.\)
Ta có:
\(A=x_1^2x_2+x_1x_2^2\)
\(=x_1x_2\left(x_1+x_2\right)\)
\(=\frac{1}{3}.\frac{5}{3}=\frac{5}{9}\)
Vậy, \(A=\frac{5}{9}\)
Đk để pt có nghiệm:
\(\Delta\ge0\)
\(\Rightarrow25-12=13\ge0\left(LĐ\right)\)
Theo hệ thức Viet:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\x_1x_2=\frac{1}{3}\end{matrix}\right.\)
\(A=x_1x_2\left(x_1+x_2\right)\)
\(A=\frac{5.1}{3.3}=\frac{5}{9}\)
Đây là box Văn mà lần sau nhớ đăng đúng chỗ.