Với \(\dfrac{A}{B}\ne0\)
\(\Rightarrow\) Phân thức nghịch đảo là: \(\dfrac{B}{A}\)
Với \(\dfrac{A}{B}\ne0\)
\(\Rightarrow\) Phân thức nghịch đảo là: \(\dfrac{B}{A}\)
Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0. Ví dụ giá trị của phân thức \(\dfrac{x^2-25}{x+1}=0\) khi \(x^2-25=0\) và \(x+1\ne0\) hay \(\left(x-5\right)\left(x+5\right)=0\) và \(x\ne-1\)
Vậy giá trị của phân thức này bằng 0 khi \(x=\pm5\)
Tìm các giá trị của x để giá trị của mỗi phân thức sau bằng 0 :
a) \(\dfrac{98x^2-2}{x-2}\)
b) \(\dfrac{3x-2}{x^2+2x+1}\)
Viết mỗi phân thức sau dưới dạng tổng quát của một đa thức và một phân thức với tử thức là một hằng số, rồi tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên :
a) \(\dfrac{3x^2-4x-17}{x+2}\)
b) \(\dfrac{x^2-x+2}{x-3}\)
Cho phân thức: A=(3-6x)/(2x^3-x^2+2x-1) a) Rút gọn phân thức. b) Tính giá trị của phân thức tại x=3. c) Chứng minh A luôn âm với mọi giá trị của x khác 1/2.
cho phân thức\(\dfrac{x^2+6x+9}{x^2-9}\)
a,tìm điều kiện xác định của x để phân thức xác định
b,rút gọn phân thức
c,tính giá trị của A tại x=2
Cho hai phân thức \(\frac{x+2}{x}\) và \(\frac{x^2-4}{x+1}\) với \(x\)≠\(0\); \(x\)≠\(-1\) và \(x\)≠\(2\), biến đổi hai phân thức này thành cặp phân thức bằng nó và có cùng tử thức
Cho phân thức \(\frac{x-2}{x+2}\) với \(x\)≠\(-2\). Biến đổi phân thức đã cho thành một phân thức bằng nó và có tử thức là đa thức \(A=x^2-4\)
Cho phân thức \(\frac{x^2-1}{(x+1)(x-3)}\) với \(x\) ≠ \(-1\); \(x\) ≠\(3\). Biến đổi phân thức đã cho thành một phân thức bằng nó và có tử thức là đa thức \(A=x-1\)
Phát biểu quy tắc : cộng hai phân thức cùng mẫu thức, cộng hai phân thức khác mẫu thức.
Làm tính cộng :
\(\dfrac{3x}{x^3-1}+\dfrac{x-1}{x^2+x+1}\)
Muốn quy đồng mẫu thức của nhiều phân thức có mẫu thức khác nhau, ta làm thế nào ?
Hãy quy đồng mẫu thức của hai phân thức :
\(\dfrac{x}{x^2+2x+1}\) và \(\dfrac{3}{5x^2-5}\)