Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x-12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)