Giải:
Phương trình hoành độ điểm chung của (d) và (P) là:
\(x^2-2x+m^2-9=0\left(1\right)\)
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung thì phương trình (1) có hai nghiệm trái dấu.
\(\Leftrightarrow ac< 0\Leftrightarrow m^2-9< 0\)
\(\Leftrightarrow\left(m-3\right)\left(m+3\right)< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-3< 0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>-3\end{matrix}\right.\)
\(\Leftrightarrow-3< m< 3.\) Vậy....
ta có pt hoành độ giao điểm
\(x^2=2x-m^2+9\)
\(\Leftrightarrow x^2-2x+m^2-9=0\)
ta có \(\Delta'=10-m^2\)
để pt có 2 no phân biệt thì \(\Delta'>0\)
hay \(10-m^2>0\Rightarrow-\sqrt{10}< x< \sqrt{10}\)
theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1x_2=m^2-9\\x_1+x_2=2\end{matrix}\right.\)
để thỏa điều kiện thì \(x_1;x_2\) cùng dương
vậy \(x_1x_2\ge0\Leftrightarrow m^2-9\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-3\\x\ge3\end{matrix}\right.\)
kết hợp điều kiện ta suy ra
để thỏa điều kiện thì \(\left[{}\begin{matrix}-\sqrt{10}< x\le-3\\3\le x< \sqrt{10}\end{matrix}\right.\)