Cho parabol (P) : y = x2 và đường thẳng (d) : y = 2x – m2 + 9.
Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm nằm về hai phía của trục tung.
cho hàm số y=x^2 có đồ thị hàm số là (p) và đường thẳng (d) y=x+m
a; tìm m để đường thẳng (d) cắt (p) tại hai điểm phân biệt
b; tìm m để đường thẳng (d) cắt (p) tại hai điểm phân biệt nằm bên phải trục tung
c; tìm m để đường thẳng(d) cắt (p) tại hai điểm phân biệt nằm bên trái trục tung
d; tìm m để đường thẳng (d) cắt (p) tại hai điểm phân biệt nằm về hai phía với trục tung
Trong mp tọa độ cho đ/t (d)y=(2m+1)x-2m+4 và (P) y=\(x^2\)
a,cm : (d) luôn cắt (P) tại 2 điểm phân biệt A,B
b, Gọi H ,K là hình chiếu của A,B trên Ox .
Tìm m để H,K nằm ở 2 phía trục tung thỏa mãn độ dài HK =4
Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m + 1)x - 4
a) Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt
b) Gọi A (x1;y1) và B (x2;y2) là hai giaoo điểm của đường thẳng (d) với parabol (P). Tìm m để \(\sqrt{x_1}-\sqrt{x_2}=2\)
Trong mặt tọa độ Oxy, cho đường thẳng (d): y = 2x + m2 – m + 5 và parabol (P): y = x2 . a. Với m = 1, vẽ đường thẳng (d) và parabol (P) trên cùng hệ trục tọa độ Oxy. b. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi m. c. Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn (x1 + 1)(x2 + 1) = –2. d*. Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn |2x1| – |x2| = 1.
Cho parabol (P) y=x2 và đường thẳng (d) y=2x+3-m2.Tìm m để (P) cắt (d) tại 2 điểm phân biệt A(xA;yA) và B(xB;yB) sao cho T=|xAxB-2(xA+xB)-2| đạt giá trị lớn nhất và tìm giá trị lớn nhất đó
Cho (P) : y = x2 và đường thẳng (d) : y = ( m - 1 )x + m + 4
Tìm m để ( d) và (P) cắt nhau tại 2 điểm phân biệt nằm về 2 phía trục tung.
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y=x2 và đường thẳng (d): y=2(m-1)x+5-2m (m là tham số)
a) Vẽ đồ thị parabol (P).
b) Biết đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1, x2. Tìm m để x+x=6
Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21