Lời giải:
Ta có: \(P=(1-i)^2+(1-i)^4+....+(1-i)^{2018}\)
\(P(1-i)^2=(1-i)^4+(1-i)^6+...+(1-i)^{2020}\)
\(\Rightarrow P(1-i)^2-P=(1-i)^{2020}-(1-i)^2\)
Để ý \((1-i)^2=-2i\) \(\Rightarrow (1-i)^{2020}=-2^{1010}\)
\(\Rightarrow -P(2i+1)=-2^{1010}+2i\Rightarrow P=\frac{2^{1010}-4-i(2+2^{1011})}{5}\)
\(\Rightarrow a=\frac{2^{1010}-4}{5};b=\frac{-(2+2^{2011})}{5}\)
\(\Rightarrow 5(a-b)=3.2^{1010}-2\). Đáp án A