Bài 2: Cộng, trừ và nhân số phức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hương Quỳnh Nguyễn
Cho P=(1−i)^2+(1−i)^4+(1−i)^6+...+(1−i)^2016+(1−i)^2018=a+bi . Hiệu 5(a−b) bằng
A. 3.21010−2
B. −2−2^1011
C. −2+2^1009
D. 2−2^1009
Akai Haruma
4 tháng 7 2017 lúc 15:24

Lời giải:

Ta có: \(P=(1-i)^2+(1-i)^4+....+(1-i)^{2018}\)

\(P(1-i)^2=(1-i)^4+(1-i)^6+...+(1-i)^{2020}\)

\(\Rightarrow P(1-i)^2-P=(1-i)^{2020}-(1-i)^2\)

Để ý \((1-i)^2=-2i\) \(\Rightarrow (1-i)^{2020}=-2^{1010}\)

\(\Rightarrow -P(2i+1)=-2^{1010}+2i\Rightarrow P=\frac{2^{1010}-4-i(2+2^{1011})}{5}\)

\(\Rightarrow a=\frac{2^{1010}-4}{5};b=\frac{-(2+2^{2011})}{5}\)

\(\Rightarrow 5(a-b)=3.2^{1010}-2\). Đáp án A


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết