Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Ryuu

cho P= (\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\) ):\(\left(\dfrac{2}{x}_{ }-\dfrac{2-x}{x\sqrt{x}+x}\right)\)

a, rút gọn

b, tìm giá trị của x để P>2

c,tìm GTNN của P

Nguyen Thi Trinh
16 tháng 5 2017 lúc 11:01

a/ ĐKXĐ: \(x>0;x\ne1\)

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)

= \(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)

= \(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\)

= \(\dfrac{x}{\sqrt{x}-1}\)

b/ Với \(x>0;x\ne1\)

Để P>2 \(\Leftrightarrow\dfrac{x}{\sqrt{x}-1}>2\Leftrightarrow\dfrac{x-2\sqrt{x}+2}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)^2+1}{\sqrt{x}-1}>0\)

Ta có: \(\left(\sqrt{x}-1\right)^2>0\) với mọi \(x>0,x\ne1\)

\(\Rightarrow\left(\sqrt{x}-1\right)^2+1>0\) với mọi x

Khi đó, \(\dfrac{\left(\sqrt{x}-1\right)^2+1}{\sqrt{x}-1}>0\) \(\Leftrightarrow\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

Vậy để P>2 thì x>1

Nguyen Thi Trinh
16 tháng 5 2017 lúc 11:10

c/ với \(x>0,x\ne1\)

Ta có: \(\dfrac{x}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2+1+2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

= \(\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2\)

Áp dụng bđt Co-si ta có:

\(\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right).\dfrac{1}{\sqrt{x}-1}}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}\ge2\)

\(\Rightarrow\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\)

\(\Leftrightarrow x-2\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

Vậy GTNN của P là 4 khi x=4


Các câu hỏi tương tự
Trang Nguyễn
Xem chi tiết
ngoc linh bui
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Đỗ ĐứcAnh
Xem chi tiết
Nam Thanh Vũ
Xem chi tiết
๖ۣۜIKUN
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Triết Phan
Xem chi tiết
Linh Bùi
Xem chi tiết