cho (O) và 2 dây AB ,CD bằng nhau và cắt nhau tại M ( C thuộc cung nhỏ AB , B thuộc cung nhỏ CD )
a, cmr cung AC = cung DB
tam giác MAC = TAM GIÁC MDB
c, tức giác ACBD là hình gì ?
Bài25. Cho đường tròn (O; R) và dây AB (AB < 2R). Gọi C là điểm chính giữa cung nhỏ AB, lấy điểm D trên cung lớn AB ( AD > BD). Dây AB cắt OC, CD lần lượt tại I và E. Từ B kẻ BH vuông góc với CD tại H. Chứng minh: BCIH là tứ giác nội tiếp. Chứng minh: CE. CD không phụ thuộc vào vị trí của điểm D trên cung lớn AB. Tia IH cắt BD tại F. Chứng minh: AD = 2IF. Xác định vị trí của D trên cung lớn AB sao cho chu vi của tam giác OBF đạt giá trị lớn nhấBài 28. Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Hạ OA vuông góc với d tại A. Gọi B là một điểm thuộc đường thẳng d ( B không trùng A). Qua B kẻ hai tiếp tuyến BC, BD tới đường tròn (C, D là tiếp điểm). Nối CD cắt OB tại E, cắt OA tại F. Chứng minh: bốn điểm B, C, O, D thuộc một đường tròn. Chứng minh: OA. OF = OB . OE Đoạn thẳng OB cắt đường tròn (O) tại I. Chứng minh: I cách đều ba cạnh của tam giác BCD. Tìm vị trí của B trên đường thẳng d để √(OE.EF) đạt giá trị lớn nhất.Bài 29. Cho đường tròn nửa (O), đường kính AB = 2R. Gọi Ax, By lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Lấy điểm K nằm giữa A và B (K không trùng A, B) và điểm M thuộc nửa đường tròn (O) (M không trùng A, B). Đường thẳng vuông góc với MK tại M cắt Ax, By lần lượt tại C và D. Chứng minh: ACMK là tứ giác nội tiếp. Chứng minh: (MDK) ̂=(MBK) ̂ . Từ đó chứng minh: CK DK. Gọi giao điểm AM và CK là E, giao điểm của BM và DK là F. Tứ giác AEFK là hình gì? Tại sao? Với AM = R và K là trung điểm của AO. Tính EF/MK ?
Câu 1: Cho đường tròn (O; R), lấy B \(\in\) (O) gọi H là trung điểm của đoạn OB. Dây CD vuông góc với OB tại H. Tính số đo cung nhỏ và cung lớn CD
Câu 2: Cho tam giác ABC cân tại A. Vẽ (O) đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính \(\widehat{MON}\), biết \(\widehat{BAC}\) = \(40^o\)
Cho (O) có dây AB. Bán kính OM vuông góc với AB ( M thuộc cung nhỏ AB ). Tiếp tuyến tại A của (O) cắt tia OM tại C. Chứng minh AM là tia phân giác của góc BAC
Cho (O), vẽ 2 dây cung AB và CD vuông goc với nhau trong (O). Qua A veax đường thẳng vuông góc với BC tại H và cắt đường thẳng CD tại E. Gọi F là điểm đối xứng của C qua AB. Tia À cắt BD tại K. C/m:
a) Tứ giác AHCM nội tiếp
b) ΔADE cân
c) AK\(\perp\) BD
d) H, M, K thẳng hàng
Bài 1:
cho đường tròn(O;R) dây AB<2R lấy M và N trên cung nhỏ AB sao cho cung AM = cung MN= cung NB. các đoạn thẳng OM,OA cắt AB tại C và D
a, chứng minh AC=BD
b, AC>CD
Bài 2:
cho đường tròn tâm O, 2 dây AB,CD vuông góc với nhau, gọi M là trung điểm BC. chứng minh rằng: OM= AD/2
Cho đường tròn (O;R) có đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa O và B). Trên tia đối của tia AB lấy điểm S, SC cắt (O;R) tại điểm thứ hai là M.
a) Chứng minh: SC.MA = SA.BC
b) Gọi H là giao điểm của MA và BC; K là giao điểm của MD và AB. Chứng minh BKMH là tứ giác nội tiếp và HK // CD.
c) Chứng minh: OK.OS = R2