cho đường tròn tâm o bán kính R , dây BC cố định , BC< 2R . điểm A thay đổi trên cung lớn BC sao cho AB < AC . Kẻ đường kính Ad . BC cắt tiếp tuyến tại A của (o) ở M. a, IA . ED = OE .AC , DC // AE . b , Gọi G là gaio điểm của MO với đường tròn ngoại tiếp tam giác AEF . chứng minh tâm đường tròn nội tiếp tam giác ABG chạy trên một đường cố định .
Cho đường tròn (O) đường kính AB, M là điểm tùy ý thuộc (O) (M không trùng A và B). Trên tia MB lấy điểm N sao cho MA = MN. Vẽ hình vuông AMNP, tia MP cắt (O) tại C. a) Chứng minh C là tâm đường tròn ngoại tiếp tam giác ANB
Cho nửa đường tròn (O;R) đường kính AB. M chuyển động trên nử (O). Xác định vị trí của M để bán kính đường tròn nội tiếp tam giasc MAB đạt giá trị lớn nhất.
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om
Cho đường thẳng a cắt (O;R) tại hai điểm A, B. Lấy điểm M thuộc đường thẳng a ( M nằm ngoài (O;R)). Kẻ hai tiếp tuyến MC, MD ( C, D là tiếp điểm). Gọi I là trung điểm của dây AB.
a) Giả sử OM=2R, tính độ dài MC theo R.
b) Chứng minh 5 điểm M, C, I, O, D cùng thuộc một đường tròn. Xác định tâm của đường tròn đó.
c) Chứng minh khi điểm M di động trên a thì đường thẳng CD luôn đi qua một điểm cố định.
d) Tìm vị trí của đường thẳng a để tổng MA+MB đạt giá trị nhỏ nhất.
Cho nửa đường tròn tâm O đường kính ab = 2R. M, N là 2điểm nằm trên đường tròn sao cho M thuộc cung AN và tổng khoảng cách từ A, B đến M, N = R nhân căn 3
a) Tính MN theo R
b) Gọi giao điểm của AN với BM là I, giao điểm của AM với BN là K. Chứng minh M, I, K cùng nằm trên một đường tròn. Tính bán kính đường tròn đó theo R
c) Tìm giá trị lớn nhất của diện tích tam giác AKB theo R khi M, N thay đổi nhưng vẫn thoả mãn điều kiện đề bài
Cho đường tròn tâm O bán kính R và đường thẳng(Δ)không có điểm chung với đường tròn tâm( O), H là hình chiếu vuông góc của O trên (Δ) .từ điểm M bất kì trên (Δ) ( M không trùng H), vẽ 2 tiếp tuyến MA, MB với đường tròn (O) (A,B là hai tiếp điểm ).Gọi I, K theo thứ tự là giao điểm của AB với OM và OH
1. Chứng minh AB = 2 .AK với 5 điểmM ,A ,O, B, H cùng thuộc đường tròn
2 .Chứng minh OI.OH = OK.OM = \(R^2\)
3.trên đoạn OA lấy điểm N sao cho AN = 2ON. đường trung trực của BN cắt OM ở E .tính tỉ số\(\dfrac{OE}{OM}\)
từ điểm a nằm ngoài đường tròn (o,r) vẽ các tiếp tuyến ab,ac(b,c là tiếp điểm) cát tuyến amn của (o,r) chứng minh
a,tứ giác aboc nội tiếp xác định tâm o' và bán kính của đường tròn đi qua 4 điểm a,b,o,c
b,ab^2=am.an
c,gọi i là trung điểm của mn chứng minh ia là phân giác góc bic
Cho đường tròn (0,r) và điểm M nằm ngoài đường tròn . Vẽ 2 tiếp tuyến MA , MB của đường tròn ( AB là tiếp điểm )a, Chứng minh rằng 4 điểm O,A,M,B nằm trên 1 đường trònb, Biết OA = 6 cm , AM = 8cm . Tính số đo góc AMO và độ dài đoạn thẳng ABc, Gọi giao điểm của OM và (O;r) là K . Từ K kẻ KP⊥AM (P∈AM ) ; kẻ KQ ⊥BM ( Q∈BM ) . Chứng minh rằng PQ // AB