Cho hình bình hành ABCD gọi O là giao điểm của 2 đường chéo AC và BD đường thẳng qua O không song song với AD và cắt AB tại M và CD tại M a) C/m M đối xứng với N qua O b)Chứng tỏ rằng tứ giác AMCN là hình bình hành
Cho tam giác ABC vuông tại A có M là trung điểm của BC, I là một điểm bất kì nằm trên AC ( I khác A và C), N là điểm đối xứng của I qua M. a) Chứng minh tứ giác BICN là hình bình hành b) Biết AB = 12cm, AC = 16cm. Tính độ dài AM?.
Cho tam giác ABC nhọn(AB>BC).Gọi M,N,P lần lượt là trung điểm AB,AC,BC.Trên tia đối tia NM lấy D sao cho ND=NM.Chứng minh a) Tứ giác BMNP là hình bình hành b)BN//DP c)PN đi qua trung điểm AD d)Gọi MC cắt PD ở E. Chứng minh DE=2PE
Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I a) Biết AB = 8cm. Tính MI b) Chứng minh tứ giác AMCK là hình chữ nhật c) Chứng minh tứ giác ABMK là hình bình hành
Bài 1. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm của các cạnh BC và AD, O là giao điểm của AC và BD. Chứng minh: a) Tứ giác AMCN là hình bình hành. b) Ba điểm M , N, O thẳng hàng.
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh: Tứ giác BMNP là hình bình hành.
b/ Gọi I là trung điểm của MP. Chứng minh: Ba điểm B, I, N thẳng hàng.
Cho hình bình hành ABCD. M∈AB,N∈CD,AM=CN.
a, C/m DM//BN
b, DM cắt AC tại I, BN cắt AC tại K. C/m tứ giác MINK là hình bình hành
c, Gọi O là giao điểm của AC và BD. C/m M đối xứng với N qua O
Cho tam giac ABC có AB<AC . Lấy D, E lần lượt là trung điểm của AB, AC.
d) Chứng minh tứ giác BDEC là hình thang.
e) Gọi M là điểm đối xứng của B qua E. Chứng minh: Tứ giác ABCM là hình bình hành.
f) Gọi N là điểm đối xứng của C qua D. Chứng minh ba điểm N, A, M thẳng hàng.