Bài 1. Cho △ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a. Cm: △AFH ∼ △ ADB
b. Cm: BH . HE = CH . HF
c. Cm: △AEF ~ △ABC
d. Gọi I là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường AC tại N. Chứng minh: MH = HN.
Bài 2. Cho △ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE,CF cắt nhau tại H.
a. Cm: △CFB ~ △ADB
b. Cm: AF . AB = AH . AD
c. Cm: △BDF ~ △BAC
d. Gọi M là trung điểm của BC. Chứng minh: Góc EDF = góc EMF.
Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Từ H hạ HM vuông góc EF tại M và HN vuông góc ED tại N.
a)CMR: tam giác BED đồng dạng tam giác BCH
b) CM: HM=HN
c) Gọi I,J,Q,K lần lượt là hình chiếu của F trên AC, AD, BE, BC. Cmr: I,J,Q,K thẳng hàng
Cho hình thang ABCD có đáy nhỏ CD. Từ D vẽ đường thẳng song song BC, cắt AC tại M và AB tại K. Từ C vẽ đường thẳng song song Ad cắt AB tại F. Qua F kẻ đường thẳng song song AC, cắt BC tại P. Chứng minh rằng:
a) MP // AB
b) Ba đường thẳng MP, CF, DB đồng quy
Cho tam giác ABC nhọn có các đường cao BE,CF cắt nhau tại H (E thuộc AC, F thuộc AB)
a) chứng minh tam giác AEB đồng dạng tam giác AFC
b) chứng minh tam giác AEF đồng dạng tam giác ABC
c) đường thẳng AH cắt BC tại D. Tính tổng HD/AD+HE/BE+HF/CF
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm đối xứng với E qua BC. CMR: F,D,K thẳng hàng.
Cho tam giác ABC có các đường phân giác trong BE và CF cắt nhau tại I. Gọi M , N lần lượt là hình chiếu vuông góc của A trên BE và CF. Tia AM cắt BC tại D . Cho AB = 12cm , AC = 15cm và BC = 18cm, tính độ dài đoạn thẳng MN .
Cảm ơn mng nhiều ạ!