cho 5 điểm bất kì sao cho cứ 3 điểm thì tạo được một tam giác. CM trong các tam giác tạo thành có ít nhất một tam giác mà cả ba góc đều nhọn
1.Cho tam giác đều BSC, phía trong tam giác vẽ tam giác vuông cân ABC.trong tam giác abc lấy điểm D sao cho góc DBC=ACD=30 độ. Chứng minh tứ giác SADC là hình thang
2.Cho hình thang vuông ABCD (góc C=B=90 độ). Có AB=Bc=1/2 DC. Lấy điểm M bất kì trên cạnh AB, lấy điểm N trên cạnh AD sao cho góc NMC=90 độ. Chứng minh rằng khi M thay đổi trên cạnh AB thì góc MNC có số đo không đổi.
tam giác ABC đều cạnh a = 0,123456 từ đỉnh P bất kì nằm trong tam giác kẻ PM vuông góc AB, PN vuông góc với AC, PQ vuông góc với BC. Tính PM+PN+PQ theo a
bài 8 Cho đoạn thẳng AB và M là điểm bất kì thuộc đoạn thẳng đó. Vẽ về một phía của AB các tam giác đều AMD , BME . Gọi I là trung điểm của đoạn thẳng DE. Khi M di chuyển trên đường thẳng AB:
a, chứng minh MI luôn đi qua giao điểm của AD , BE.
B, điểm I di chuyển trên đường nào ?
Cho 1 điểm O nằm trong tam giác đều ABC. kẻ OA' , OB' , OC' theo thứ tự vuông góc với BC, AC,AB. Chứng minh rằng : AC' + BA' + CB' không đổi khi O thay đổi vị trí trong tam giác ABC.
Cho tam giác ABC cân tại A, có góc A= 700. Từ 1 điểm D thuộc BC, kẻ DH vuông góc AC, H thuộc AC.
a) Tính các góc của tứ giác ABDH
b) Tính số của góc HDC
c) CMR: góc A bằng 2 lần góc HDC với A có số đo bất kì
Cho góc xOy có số đo bằng 60o. Đường tròn có tâm K nằm trong góc xOy tiếp xúc với tia Ox tại M và tiếp xúc với tia Oy tại N. Trên tia Ox lấy điểm P thỏa mãn OP = 3OM. Tiếp tuyến của đường tròn (K) qua P cắt tia Oy tại Q khác O. Đường thẳng PK cắt đường thẳng MN ở E. Đường thẳng QK cắt đường thẳng MN ở F.
1. Chứng minh tam giác MPE đồng dạng với tam giác KPQ.
2. Chứng minh tứ giác PQEF nội tiếp được trong đường tròn.
3. Gọi D là trung điểm của đoạn PQ. Chứng minh tam giác DEF là một tam giác đều.
Bài 1 : Cho hình bình hành ABCD có M là điểm bất kì trên cạnh AD. Tia BM cắt dường thẳng CD tại N. từ M kẻ đường thẳng song song với CD cắt BD tại E.
Chứng minh rằng: \(\frac{1}{ME}=\frac{1}{CD}+\frac{1}{DN}\)
Bài 2: Cho M là điểm bất kì trong tam giác ABC. Các đường thẳng AM, BM, CM lần lượt các cạnh BC, AC, AB tại A', B', C'
chứng minh rằng: \(\frac{AM}{AA'}+\frac{BM}{BB'}+\frac{CM}{CC'}=2\)
Cho tam giác ABC có 3 góc nhọn, các điểm M,N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H.
a, nối MN, Tam giác AHB đồng dạng với tam giác nào?
b. GỌi G là trọng tâm tam giác ABC, chứng minh tam giác AHG đồng dạng với MOG
c. Chứng minh ba điểm H,O,G thẳng hàng