tham khảo:
Số lập phương đơn vị là: 8.4.3 = 96
tham khảo:
Số lập phương đơn vị là: 8.4.3 = 96
Cho hình hộp đứng \(ABCD.A'B'C'D'\) có cạnh bên \(AA' = 2a\) và đáy \(ABCD\) là hình thoi có \(AB = a\) và \(AC = a\sqrt 3 \).
a) Tính khoảng cách giữa hai đường thẳng \(B{\rm{D}}\) và \(AA'\).
b) Tính thể tích của khối hộp.
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Tính khoảng cách:
a) Giữa hai mặt phẳng \(\left( {ACD'} \right)\) và \(\left( {A'C'B} \right)\).
b) Giữa đường thẳng \(AB\) và \(\left( {A'B'C'D'} \right)\).
Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\) và có \(O\) là giao điểm hai đường chéo của đáy.
a) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB\).
b) Tinh thể tích của khối chóp.
a) Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\). Lấy hai điểm \(A,B\) tuỳ ý trên \(a\) và gọi \(H,K\) lần lượt là hình chiếu vuông góc của \(A\) và \(B\) trên \(\left( P \right)\) (Hình 4a). So sánh độ dài hai đoạn thẳng \(AH\) và \(BK\).
b) Cho hai mặt phẳng song song \(\left( P \right)\) và \(\left( Q \right)\). Lấy hai điểm \(A,B\) tuỳ ý trên \(\left( P \right)\) và gọi \(H,K\) lần lượt là hình chiếu vuông góc của \(A\) và \(B\) trên \(\left( Q \right)\) (Hình 4b). So sánh độ dài hai đoạn thẳng \(AH\) và \(BK\).
Tính thể tích của một bồn chứa có dạng khối chóp cụt đều có kích thước được cho như trong Hình 20.
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\).
a) Tính khoảng cách giữa hai đáy của hình lăng trụ.
b) Tinh thể tích của khối lăng trụ.
Cho hai đường thẳng chéo nhau \(a\) và \(b\). Gọi \(\left( Q \right)\) là mặt phẳng chứa \(b\) và song song với \(a\). Gọi \(\left( P \right)\) là mặt phẳng chứa đường thẳng \(a\), vuông góc với \(\left( Q \right)\) và cắt \(b\) tại điểm \(J\). Trong \(\left( P \right)\), gọi \(c\) là đường thẳng đi qua \(J\), vuông góc với \(a\) và cắt \(a\) tại điểm \(I\).
Đường thẳng \(IJ\) có vuông góc với \(b\) không? Giải thích.
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình thoi cạnh \(a\) có \(O\) là giao điểm của hai đường chéo, \(\widehat {ABC} = {60^ \circ },SO \bot \left( {ABCD} \right),SO = a\sqrt 3 \). Tính khoảng cách từ \(O\) đến mặt phẳng \(\left( {SCD} \right)\).
Cho khối lăng trụ tam giác \(ABC.A'B'C'\) (Hình 14). Tìm cách chia khối lăng trụ thành ba khối chóp có cùng chiều cao và diện tích đáy.