a: \(M=\left(\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{x-4}\right)\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(=\dfrac{-x-4\sqrt{x}-4+x-4\sqrt{x}+4-4x}{x-4}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(=\dfrac{-4x-8\sqrt{x}}{x-4}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(x-4\right)\left(\sqrt{x}+3\right)}=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)
b: \(x=\sqrt{5}-1-\left(\sqrt{5}-2\right)=\sqrt{5}-1-\sqrt{5}+2=1\)
Thay x=1 vào M, ta được:
\(M=\dfrac{4}{1+3}=\dfrac{4}{4}=1\)
c: Để M là số nguyên thì \(4\sqrt{x}-12+12⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;3;9\right\}\)
hay \(x\in\left\{0;9;81\right\}\)