Cho mặt phẳng (Q) và điểm M nằm ngoài mặt phẳng (Q).
a) Trong mặt phẳng (Q) vẽ hai đường thẳng a’, b’ cắt nhau. Qua điểm M kẻ các đường thẳng a, và b lần lượt song song với a’, b’. Gọi (P) là mặt phẳng xác định bởi hai đường thẳng (cắt nhau) a và b (Hình 63). Mặt phẳng (P) có song song với mặt phẳng (Q) hay không?
b) Xét mặt phẳng (R) đi qua điểm M và song song với mặt phẳng (Q). Hai mặt phẳng (R) và (P) có trùng nhau hay không?
a) Ta có: a // a’ mà a’ ⊂ (Q) nên a // (Q);
b // b’ mà b’ ⊂ (Q) nên b // (Q).
Do a // (Q);
b // (Q);
a, b cắt nhau tại M và cùng nằm trong mặt phẳng (P)
Suy ra (P) // (Q).
b) Do (R) // (Q) nên trong mp(R) tồn tại hai đường thẳng a’’, b’’ đi qua M và lần lượt song song với a’, b’ trong mp(Q).
Ta có: a // a’, a’’ // a’ nên a // a’’.
Mà a’’ ∈ (R), do đó a // (R)
Do hai mặt phẳng (P) và (R) có một điểm chung nên chúng có đường thẳng chung d.
Ta có: a // (R);
a ⊂ (P);
(P) ∩ (R) = d.
Suy ra a // d.
Mà a, d cùng nằm trong mặt phẳng (P) và cùng đi qua điểm M nên đường thẳng a chính là giao tuyến của hai mặt phẳng (P) và (R).
Chứng minh tương tự ta cũng có đường thằng b cũng là giao tuyến của hai mặt phẳng (P) và (R).
Như vậy, hai mặt phẳng (P) và (R) có hai giao tuyến a và b nên (P) và (R) là hai mặt phẳng trùng nhau.