Gọi d' là đường thẳng qua M và vuông góc d
\(\Rightarrow\) Phương trình d' có dạng:
\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)
Gọi N là giao điểm của d và d' thì tọa độ N thỏa: \(\left\{{}\begin{matrix}x+y=0\\x-y+1=0\end{matrix}\right.\) \(\Rightarrow N\left(-\frac{1}{2};\frac{1}{2}\right)\)
M' là ảnh của M qua phép đối xứng trục d \(\Rightarrow\) N là trung điểm MM'
\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_N-x_M=-3\\y_{M'}=2y_N-y_M=-2\end{matrix}\right.\) \(\Rightarrow M'\left(-3;-2\right)\)