Bài 3: Phép đối xứng trục

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hùng Nguyễn

Cho điểm M(2,1)và đường thẳng d 3x+4y+10=0.Tìm ảnh của điểm M đối xứng qua đường thẳng d.

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 23:10

Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow\) d' nhận (4;-3) là 1 vtpt

Phương trình d':

\(4\left(x-2\right)-3\left(y-1\right)=0\Leftrightarrow4x-3y-5=0\)

Gọi N là giao điểm của d và d' \(\Rightarrow\)tọa độ N thỏa mãn:

\(\left\{{}\begin{matrix}3x+4y+10=0\\4x-3y-5=0\end{matrix}\right.\) \(\Rightarrow N\left(-\dfrac{2}{5};-\dfrac{11}{5}\right)\)

M' là ảnh của M qua phép đối xứng trục d \(\Leftrightarrow\) N là trung điểm MM'

\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_N-x_M=-\dfrac{14}{5}\\y_{M'}=2y_N-y_M=-\dfrac{27}{5}\end{matrix}\right.\)

\(\Rightarrow M'\left(-\dfrac{14}{5};-\dfrac{27}{5}\right)\)

Akai Haruma
30 tháng 7 2021 lúc 23:16

Lời giải:
Gọi $M'(a,b)$ là ảnh của $M$ đối xứng qua $d$
$\overrightarrow{MM'}=(a-2,b-1)$

Vì $\overrightarrow{MM'}\perp \overrightarrow{u_d}$ nên:

$\frac{a-2}{2}=\frac{b-1}{1}\Leftrightarrow a-2=2(b-1)(1)$

$I$ là trung điểm $MM'$. $x_I=\frac{2+a}{2}; y_I=\frac{b+1}{2}$

$3.\frac{2+a}{2}+4.\frac{b+1}{2}+10=0$

$\Leftrightarrow 3a+4b+30=0(2)$

Từ $(1);(2)\Rightarrow a=-6;b=-3$


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Future In Your Hand ( Ne...
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phamchung Phamchung
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đặng Ngọc Đăng Thy
Xem chi tiết
Bình Trần Thị
Xem chi tiết