Cho đường tròn (O) đường kính AB, lấy C thuộc (O) tiếp tuyến tại A của (O) cắt BC tại D, gọi M là trung điểm của AD
a) Chứng minh: MC là tiếp tuyến của (O)
b)Chứng minh: MO vuông góc AC tại trung điểm I của AC
Cho đường tròn (O) đường kính AB, lấy C thuộc (O) tiếp tuyến tại A của (O) cắt BC tại D, gọi M là trung điểm của AD
a) Chứng minh: MC là tiếp tuyến của (O)
Cho nửa (O;R) đường kính AB. Trên nửa mặt phẳng bờ AB chứ nửa đường tròn từ A và B kẻ 2 tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D.
a)Chứng minh AB là tiếp tuyến đường tròn đường kính BC
b)Gọi giao điểm của CO với AM là I;OD cắt BM tại K
Chứng minh MO=IK
c)Chứng minh khi M chạy trên nửa đường tròn thì trung điểm J của MO chạy trên 1 đường cố định
Cho đường tròn (O:R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP>R), Từ P a) Chứng minh bốn điểm A, P, M, D cùng thuộc một đường tròn. kẻ tiếp tuyến PM với (O). b) Chứng minh BM/OP c) Đường thẳng vuông góc với AB tại O cắt tỉa BM tại N. Chứng minh tứ giác OBNP là hình bình hành. d) Giả sử AN cắt OP tại K, PM cắt ON tại I, PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.
Cho ( O, R ) đường kính AB . Lấy điểm C nằm trên đường tròn , tiếp tuyến tại C cắt tiếp tuyến tại B ở D và E . Chứng minh
a) OE vuông góc với BC và tam giác ABC
b) DE = AD + BE
c) DÔE = 90 độ
d) BE.AD=R mũ 2
Cho hai đường tròn (O, R) và (O’, R’) cắt nhau tại A và B. Một điểm P nằm
trên đường thẳng AB (khác A và B). Gọi d là tiếp tuyến chung của (O) và (O’) với tiếp
điểm lần lượt là C và C’. Đường thẳng PC cắt (O) tại D, PC’ cắt (O’) tại D’.
a) Chứng minh rằng tứ giác CDD’C’ nội tiếp.
b) Chứng minh đường tròn ngoại tiếp tam giác PDD’ tiếp xúc với (O) và (O’).
cho đường tròn tâm o , các điểm b và c nằm trên đường tròn . các tiếp tuyến tại b và c cắt nhau tại a . gọi m là điểm của cung nhỏ bc . tiếp tuyến tại m cắt ab và ac theo thứ tự d và e . gọi giao điểm của od và oe với bc lần lượt là i và k
Chứng minh rằng :
a) các tứ giác OBDK , DIKE là tứ giác nội tiếp ,
b)ba đường thẳng OM , DK , EI đồng quy
(ko cần vẽ hình)Cho nửa đường tròn (O) đường kính AB. Kẻ các tiếp tuyến Ax, By của nửa đường tròn. Qua điểm M bất kỳ thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C và D. Chứng minh rằng:
1) góc COD = \(90^o\)
2) CD = AC + BD
3) Tích AC.BD không đổi khi M di chuyến trên nửa đường tròn