a) \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
b) \(\left(6x+7\right)^2\left(3x+4\right)\left(x+1\right)=6\)
c) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=840\)
chứng minh các bất đẳng thức
a/ \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
c/ \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
b/ \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)
Cho biểu thức A=\(\left(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\right):\dfrac{1}{3x-2x^2-6}\)
a. Rút gọn A.
b. Tìm x để A=<0
c. Tìm GTLN của A khi x >2
1. Tìm m để pt ẩn x sau tương đương:
a) \(\dfrac{2x-2}{5}=3x\) và \(5x+m=4x+\left(1-m\right)\)
b)\(\left(m+1\right)x-8=2x+m\) và \(mx-3x=2\)
2.a) Tìm GTLN của A = \(-7x^2+2x+8\)
b) Tìm GTNN của B = \(3x^2-2x+8\)
cho M= \(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}\)-\(\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}\)-\(\dfrac{X^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a, rút gọn M
b, tìm các cặp số nguyên x,y để biểu thức có giá trị là -2010
Giải phương trình
a)\(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
b)\(\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
c)\(\left(\dfrac{3}{2x+1}+2\right)\left(5x-2\right)=\dfrac{5x-2}{2x+1}\)
d)\(\dfrac{2x-1}{x^3+1}+\dfrac{1}{x+1}=\dfrac{2}{x^2-x+1}\)
GIÚP MÌNH VỚI , ĐANG CẦN GẤP
1) giải phương trình :
a) \(\left(2+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
b) \(\dfrac{7x+10}{x+1}\left(x^2-x-2\right)-\dfrac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
c) \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
d) \(\dfrac{13}{2x^2+x-21}+\dfrac{1}{2x+7}+\dfrac{6}{9-x^2}=0\)
i) \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
k) \(\dfrac{1+\dfrac{x}{x+3}}{1-\dfrac{x}{x+3}}=3\)
a) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{3}-\left(x-1\right)\)
b) \(x^2-6x-2+\dfrac{14}{x^2-6x+7}=0\)
c) \(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
d) \(\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}=\dfrac{6}{x^2-9}\)
e) \(\left(1-\dfrac{2x-1}{x+1}\right)^3+6\left(1-\dfrac{2x-1}{x+1}\right)^2=\dfrac{12\left(2x-1\right)}{x+1}-20\)
Cho A = \(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
a) Rút gọn A.
b) Tìm x để A > 0